Comment on “ Tropospheric temperature response to stratospheric ozone recovery in the 21 st century ” by Hu et al . ( 2011 )
نویسنده
چکیده
Stratospheric ozone recovery is expected to figure prominently in twenty-first century climate change. In a recent paper, Hu et al. (2011) argue that one impact of ozone recovery will be to enhance the warming of the surface-troposphere system produced by increases in wellmixed greenhouse gases. Furthermore, this enhanced warming would be strongest in the Northern Hemisphere, which is surprising since previous studies have consistently shown the effects of stratospheric ozone changes to be most pronounced in the Southern Hemisphere. Hu et al. (2011) base their claims largely on differences in the simulated temperature change between two groups of CMIP3 (Coupled Model Intercomparison Project 3) climate models, one group which included stratospheric ozone recovery in its twenty-first century simulations and a second group which did not. Both groups of models were forced with the same increases in well-mixed greenhouse gases according to the A1B emissions scenario. In the current work, we compare the surface temperature responses of the same two groups of models in a different experiment in which atmospheric CO2 was increased by 1 % per year until doubling. We find remarkably similar differences in the simulated surface temperature change between the two sets of models as Hu et al. (2011) found for the A1B experiment, suggesting that the enhanced warming which they attribute to stratospheric ozone recovery is actually a reflection of different responses of the two model groups to greenhouse gas forcing.
منابع مشابه
Tropospheric temperature response to stratospheric ozone recovery in the 21st century
Recent simulations predicted that the stratospheric ozone layer will likely return to pre-1980 levels in the middle of the 21st century, as a result of the decline of ozone depleting substances under the Montreal Protocol. Since the ozone layer is an important component in determining stratospheric and tropospheric-surface energy balance, the recovery of stratospheric ozone may have significant...
متن کاملInteractive ozone and methane chemistry in GISS-E2 historical and future climate simulations
The new generation GISS climate model includes fully interactive chemistry related to ozone in historical and future simulations, and interactive methane in future simulations. Evaluation of ozone, its tropospheric precursors, and methane shows that the model captures much of the largescale spatial structure seen in recent observations. While the model is much improved compared with the previou...
متن کاملInteractive comment on “Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations” by C. Vigouroux et al
متن کامل
Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere
There has been significant stratospheric ozone depletion since the late 1970s due to ozone-depleting substances (ODSs). With the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. In this study, we examine the implications of stratospheric ozone recovery for the tropospheric che...
متن کاملInteractive comment on “Stratospheric and tropospheric SSU/MSU temperature trends and compared to reanalyses and IPCC CMIP5 simulations in 1979–2005” by A. M. Powell Jr. et al
Interactive comment on “Stratospheric and tropospheric SSU/MSU temperature trends and compared to reanalyses and IPCC CMIP5 simulations in 1979–2005” by A. M. Powell Jr. et al. Anonymous Referee #1 Received and published: 13 February 2013 General comments: This paper shows that the selected CMIP5 models consistently capture such important climate features as the stratospheric cooling trend due ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012